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the oracle

search space: N elements
focus: index, which is just a number in [0,N − 1], rather
than the element itself

assume N = 2n, so the index can be stored in n bits; M
solutions
A particular instance of the search problem can be
represented by a function f, i.e.,

f(x) =
{

1, if x is a solution to the search problem
0, if x is not a solution to the search problem
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Suppose we are supplied with a quantum oracle with the ability
to recognize solutions to the search problem.

the oracle qubit
The oracle is a unitary operator, O, defined by its action on the
computational basis:

|x⟩|q⟩ O−→ |x⟩|q ⊕ f(x)⟩,

where |x⟩ is the index register, ⊕ denotes addition modulo 2,
and the oracle qubit |q⟩ is a single qubit which is flipped if
f(x) = 1 and is unchanged otherwise.
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If the initial oracle qubit is in the state (|0⟩ − |1⟩)/
√

2, then the
final state will be

|x⟩
( |0⟩ − |1⟩√

2

)
O−→ (−1)f(x)|x⟩

( |0⟩ − |1⟩√
2

)
.

Notice the state of the oracle qubit is not changed, thus the
action of the oracle may be written:

|x⟩ O−→ (−1)f(x)|x⟩.

That is to say, the oracle marks the solutions to the search
problem by shifting the phase of the solution.
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Deutsch-Jozsa algorithm

Setting: Alice selects a number x from 0 to 2n − 1, and
mails it in a letter to Bob;

Bob calculates f(x) (constant or balanced) and
replies with the result 0 or 1.
Goal: Alice will determine whether Bob has chosen a
constant or a balanced function, corresponding with him as
little as possible.

Classical: 2n/2 + 1 queries
Quantum: 1 query using Uf to calculate f(x)
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the procedure

Schematically, the search algorithm operates as shown below.

The oracle may employ work qubits for its implementation,
but the analysis of the quantum search algorithm involves
only the n-qubit register.
Goal: to find a solution to the search problem, using the
smallest possible number of the applications of the oracle.

G???
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The quantum search algorithm consists of repeated application
known as the Grover iteration or Grover operator, which we
denote G. And it may be broken up into four steps:

1 Apply the oracle O.

2 Apply the Hadamard transform H⊗n.
3 Perform a conditional phase shift with every computational

basis state except |0⟩ receiving a phase shift of −1,

|x⟩ → −(−1)δx |x⟩.

4 Apply the Hadamard transform H⊗n.

Q1: Show that the unitary operator corresponding to the phase
shift in the G is 2|0⟩⟨0| − I.
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Each of the operations in the G may be efficiently implemented
on a quantum computer.

G = (2|ψ⟩⟨ψ| − I)O, where|ψ⟩ = 1√
N

N−1∑
x=0

|x⟩.
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geometric visualization

Actually, the Grover iteration “G” can be regarded as a rotation
in the two-dim space spanned by the starting vector |ψ⟩ and the
superposition.

|α⟩ ≡ 1√
N−M

∑′′
x |x⟩, where x indicates all non-solutions;

|β⟩ ≡ 1√
M
∑′

x |x⟩, where x indicates all solutions.

Thus, |ψ⟩ = 1√
N
∑N−1

x=0 |x⟩ =
√

N−M
N |α⟩+

√
M
N |β⟩.
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where cos θ2 =
√

N−M
M , then |ψ⟩ = cos θ2 |α⟩+ sin θ

2 |β⟩.
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performance

How many times must “G” be repeated in order to rotate |ψ⟩
near |β⟩ (the solution space)?

R =
[

arccos
√

M/N
θ

]
, with θ/2 error

If M ≪ N, then θ ≈ sin θ ≈ 2
√

M/N, thus the angular error
in the final state is at most θ/2 ≈

√
M/N.

note that R ≤ ⌈π/2θ⌉, so the lower bound on θ −→ an
upper bound on R

θ

2 ≥ sin
θ

2 =

√
M
N =⇒ R ≤ ⌈π4

√
M
N ⌉
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The quantum search algorithm (M = 1) is summarized below.
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example
Here is an explicit example illustrating how the quantum search
algorithm works on a search space of size N = 4.

The oracle can be taken to be one of the four circuits:

The whole circuit is as follows.

where the gates in the box perform 2|00⟩⟨00| − I.

|ψ⟩π/6 θ=π/3−−−−→ |β⟩, that is, exactly one iteration.
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quantum search as a quantum simulation

How would one dream up the quantum search algorithm
(Grover’s algorithm) from a state of ignorance?

Next we will sketch a heuristic means by which one can ‘derive’
this search algorithm, in the hope of lending some intuition as
to the tricky task of quantum algorithm design.

1 specify the problem to be solved (input and output)
2 guess a Hamiltonian to solve the problem, and verify that

it does work
3 find a procedure to simulate the Hamiltonian
4 analyze the resource costs of the simulation
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input and output

input: |ψ⟩

|ψ⟩ = 1√
N

N−1∑
x=0

|x⟩

output: |x⟩, where x is the solution.
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Hamiltonian

e−iHt|ψ⟩ = |x⟩

H should be entirely from the terms |ψ⟩ and |x⟩, i.e., it must be
a sum of terms like |ψ⟩⟨ψ|, |x⟩⟨x|, |ψ⟩⟨x|, |x⟩⟨ψ|, and the simplest
choice is

H = |x⟩⟨x|+ |ψ⟩⟨ψ|

e−iHt|ψ⟩ H=I+α(βX+αZ)
=⇒ e−it

[
cos(αt)|ψ⟩ − i sin(αt)(βX + αZ)|ψ⟩

]
global phase

=⇒ cos(αt)|ψ⟩ − i sin(αt)(βX + αZ)|ψ⟩
(βX+αZ)|ψ⟩=|x⟩

=⇒ cos(αt)|ψ⟩ − i sin(αt)|x⟩
t=π/2α
=⇒ |x⟩, and t = π

√
N/2
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simulate

e−iH∆t = e−i|x⟩⟨x|∆te−i|ψ⟩⟨ψ|∆t
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resource costs

U(∆t) ≡ e−iH∆t = e−i|x⟩⟨x|∆te−i|ψ⟩⟨ψ|∆t

Define

|x⟩⟨x| = (I + Z)/2 = (I + ẑ · σ⃗)/2,where ẑ = (0, 0, 1),
|ψ⟩⟨ψ| = (I + ψ⃗ · σ⃗)/2,where ψ⃗ = (2αβ, 0, (α2 − β2)),

cos(θ/2) = cos2(∆t/2)− sin2(∆t/2)ψ⃗ · ẑ,

then
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Upon substitution ψ⃗ · ẑ = α2 − β2 = (2/N − 1), we obtain

cos
(θ

2

)
= 1 − 2

N sin2
(∆t

2

)
.

In order to maximize the rotation angle θ, the smart thing is to
choose ∆t = π, then we obtain

cos(
θ

2) = 1 − 2
N ,

and for large N,
θ ≈ 4√

N
.



Grover’s algorithm quantum simulation quantum counting

Indeed, if ∆t = π, then the quantum simulation is identical
with the original quantum search algorithm, since

e−i|ψ⟩⟨ψ|π = I − 2|ψ⟩⟨ψ|,

e−i|x⟩⟨x|π = I − 2|x⟩⟨x|.

These are identical to the steps making up the Grover iteration.

quantum algorithms as quantum simulations
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amplitude amplification

If the initial superposition state in Grover’s algorithm is
replaced by any other state, say |ϕ⟩ = U|0⟩, then how to do the
quantum search?

G = (2|ϕ⟩⟨ϕ| − I)O = U(2|0⟩⟨0| − I)U†O
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quantum counting

How quickly can we determine the number of solutions, M, to
an N item search problem, if M is not known in advance?

classical: Θ(N)

quantum: Grover iteration + phase estimation
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G =

[
cos θ − sin θ
sin θ cos θ

]
=⇒ eigenvalues eiθ, ei(2π−θ)

cos( θ2) =
√

2N−M
2N =⇒ sin2( θ2) =

M
2N

t ≡ m + ⌈log(2 + 1/2ϵ)⌉, with 2−m-accuracy, (1 − ϵ)-succ.
prob.
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